Method categories according to the ICH Q2(R1)

Written by Anindya Ghosh Roy on . Posted in Method validation

The ICH Q2(R1) guideline “Validation of analytical procedures: text and methodology”  is the most important guideline used for analytical method validation. According to GMP, each method which is used for release or stability testing of drugs in a quality control laboratory of a pharmaceutical company needs to be validated or in case of compendial methods verified before being allowed to be used for routine analysis. Validation and verification are the proof that the method is suitable for its intended use. For the methods not mentioned in any pharmacopoeia, the ICH guideline provides information about the parameters used for validation. Therefore, the methods need to be clustered. Thus, the analytical methods are mainly categorized into 3 major types (identification tests, impurity tests and assays). This subdivision is also reflected in the definition of pharmaceutical quality by the German Medicines Act (AMG) in section 4: "Quality is the nature of a medicinal product, determined by identity, content, purity and other chemical, physical and biological properties or by the manufacturing procedure". Put simply, it provides answers regarding the following questions:

  • Does it contain what is declared? (--> identity)
  • Does it exclusively contain what is declared? (--> purity)
  • Does it contain as much as declared? (--> content)


1. Identification tests

As the name suggests, identification tests are performed to characterize the identity of an analyte in a given sample. It is a requirement of the authorities to proof that in the drug you'd like to sell, really the drug substance is inside which is promised to possess the function of healing. It is often done by comparing the property of an analyte to that of a reference standard. For identification tests specificity (sometimes also termed as “selectivity” although defined differently, see also our article about that topic) is important. The identification parameter “specificity” essentially requires the method to discriminate the analyte from structurally similar molecules.

E.g. a capillary isoelectric focussing (cIEF) method to identify a known monoclonal antibody charge variant among a pool of other charge variants is an example of an identification test. Other examples are e.g. peptide mapping as you get a specific cleavage pattern just belonging to your protein of interest or somehow “old-fashioned” western blotting as you use specific antibodies just able to bind to your target protein.

Much simpler identification methods are of course used in a pharmacy. Therefore, in the European Pharmacopoeia (Ph. Eur.) easy identification methods such as e.g. color reactions are listed for most active pharmaceutical ingredients.


2. Impurity tests

The impurity tests are performed to accurately define the purity profile of the sample to show that all impurities present in the drug are below acceptable limits. Hence to proof its harmlessness for the patient. All drugs have to be shown to be as safe as possible. As per the requirements, the method could be either a quantitative or a limit test for the determination of impurities in the sample. In any case, it should reflect the purity of the analyte in the sample. Some more validation characteristics are required for quantitative tests than for limit tests. Applying a quantitative method, you’ll get a result with “real” value and you know exactly how much (which quantity) of the substance you’ve determined is inside the sample (like in this example). Whereas when you apply a limit test, you just get a result like “nothing can be seen” when it is still below the limit or “something is inside” being above the limit, but you don’t know the amount. Colorimetric / photometric methods with a color changeover after reaching an appropriate limit are examples of limit tests. Another example is a HPLC/MS method to detect toxic compounds in a sample (check this publication). Limit tests are used to detect frequently occurring contaminants that are only tolerable in low concentrations but inevitable, e.g. substances for which there are also limit values in the Hazardous Substances Ordinance (German: Gefahrstoffverordnung). In the European Pharmacopoeia (Ph. Eur.) there are limit tests for e.g. methanol, formaldehyde, heavy metals and arsenic.


3. Assays

Assays are usually performed for the quantification of the analyte in a sample. They could either asses the content of the analyte or the potency of it. For both aspects appropriate methods are required by the authorities. This is due to the fact, that it must be shown that the claimed amount of active pharmaceutical ingredient is indeed inside the drug product and that the active pharmaceutical ingredient is indeed “active”. In other words, assays essentially measure either how much of the analyte (in this case the drug substance) is present in the sample or its effectivity as per the claim.

E.g. a photometric method for the determination of Fluvastatin-Natrium or a TLC-densitometric procedure for the estimation of clobetasol propionate in topical solutions are examples for methods to determine the content. In case of protein drugs, the content is often determined by a simple UV 280 nm measurement. A method determining an enzyme’s activity like a clot lysis assay for tissue plasminogen activator (tPA) is an example of a potency test. For drugs like antibodies to treat cancer by binding to specific cell receptors and inducing cell death, a specific cell culture assay is used to demonstrate potency.

Maybe you've already wondered why there is sometimes information about 100% in content determinations. Can any content be higher than 100%? Of course not in reality, but even the best analysis method can't be so specific that it only detects the analyte of interest. Impurities that can react in the same way are always also compulsorily detected. It is therefore important to quantify the impurities as well (with a different method).


In summary, these tests serve to guarantee the pharmaceutical quality by evaluating

  • the product-specific physicochemical characteristics (--> identity)
  • degradation and by-products or other impurities (--> purity) and
  • the amount of active ingredient present (--> content).

Tags: ICH Q2(R1) method validation potency content purity identification

Comments powered by CComment

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.